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“Find all friends of Alberto who are older than 30”

“What’s the lowest number of airport layovers if 
going from Malpensa to Timbuktu” 
(Answer: 1, Casablanca)

“Find all money exchanges between people in 
Milan in the last 24 hours”

Things get out of hands quickly! 
Graph queries can be extremely 
complex, operate on extremely 
large data, and require extremely 
quick results

Graph Queries - The Big Picture 2

SELECT v3.ID
MATCH (v1) -> (v2) -> (v3)
WHERE v1.ID == 1 AND v3.ID > 1
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X

SELECT v3.ID
MATCH (v1) -> (v2) -> (v3)
WHERE v1.ID == 1 AND v3.ID > 1

ANSWER: 2
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Mostly, we see again - more in depth - topics seen before
Data structures for graphs

● Space-efficient
● Fast to query (and parallel!), and (sometimes) easy to update
● Can we leverage DB data-structures? (Answer: sometimes)

A language to define queries
● SQL doesn’t really work well
● We need a query language built with graphs in mind

A set of operators
● We need to map queries in our “language” to actions on the graphs

A way to apply operators
● Broadly speaking “query planning”, here we focus on a specific case

Graph Queries  - What do we need 4
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Why do we talk about graph queries in this course?

It’s challenging from a Computer Science perspective
● Lots of possible optimizations
● Performance depends on data
● Opportunities for parallelism
● Hardware knowledge required

Plenty of research opportunities
● Ever-increasing data size and new hardware presents new 

possibilities and challenges
○ Data-driven optimization, heterogeneous architectures,

3D Xpoint SSDs, etc.
● Even our contest is an open research problem

Graph Queries  - Why do we care 5
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Don’t worry, we’ll see later all the technical details!

What are you gonna do?
Neighbour match is a common graph operator

Given a vertex, retrieve neighbours 1, 2, ... , N hops away 

There are 2 ways to implement it
● Graph traversal
● Table JOIN

But… which is faster? And when? Can you combine them to get 
a super fast adaptive implementation?

Our contest: 
Graph-Traversal VS Hash-Join 6
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Adjacency matrix

Adjacency list

COO

CSR

CSC

Other stuff

Graph data structures for everyone 7

}

}
You should know them 
already

Also used for sparse 
linear algebra
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Just a dense matrix with non-zero entries representing edges

Practical uses: almost none, used for very fast random access to 
in-neighbours AND out-neighbours, and algorithms that use 
dense matrices (e.g. GCN)

Biggest drawback: |V|2 storage space
Real-world graphs are sparse.
E.g. Wikipedia, 10M vertices, 160M edges

Sparsity:
160•106 / (10•106)2 = 0.0000016, 

1 out of 625000 is non-zero
if using 1 bit for each value, 12TB

Adjacency Matrix - 1 8
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Cost of operations

Note: I’m using O(...) if necessary, precise values where possible

● Random access: 1
● Neighbour iteration: V, in & out

● It’s bad, neighbourhoods are sparse!
● Adding edge: 1
● Modifying/removing edge: 1
● Adding vertex: O(☠)

● Actually O(V) amortized if using vector of vectors or O(E) if using a 
single vector (see next slide). Either way, if you need to add a lot of 
vertices, you are using the wrong data structure

Adjacency Matrix - 2 9

V: number of vertices,
E: number of edges
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Quick recap on how to implement matrices!

● Vector of vectors

● A single array (or vector)

● A single array is usually faster (access is 1 memory access 
instead of 2, and it’s more cache-friendly). But vector of 
vectors is easier to manipulate

Adjacency Matrix - 3 10

std::vector<std::vector<int>> G(V);

// Init sub-vectors...

for (int i = 0; i < V; i++)

    for (int j = 0; j < V; j++)

        G[i][j] = ... // Access;

std::vector<int> G(V * V);

for (int i = 0; i < V; i++) 

    for (int j = 0; j < V; j++) 

        G[i * V + j] = ... // Access;
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Keep in mind the difference between column-wise and row-wise allocation

● Row-wise: linear scan of rows (out-neighbours),
“jumps” between columns

● Column-wise: linear scan of columns
(in-neighbours), “jumps” between rows

● Don’t mix row-wise allocation
with column-wise iteration
(or vice-versa)! 
You’ll get terrible performance 
due to “jumps” causing cache misses

Adjacency Matrix - 4 11

std::vector<int> G(V * V);

for (int i = 0; i < V; i++) 

    for (int j = 0; j < V; j++) 

        G[j * V + i] = ... // ☠
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● Storing vertex properties: additional vectors, use linear algebra (e.g. 
matrix-vector multiplication) to propagate properties across the topology

● Storing edge properties: use values instead of 0/1 in the matrix. Use 
more matrices (i.e. a tensor) for additional properties (space inefficient!)

● Hardware friendliness: very good, 
easy to parallelize and exploit cache,
plenty of techniques
from numerical computing
(blocks, rows, columns)

Adjacency Matrix - 5 12

Example, PageRank equation (X is the graph):
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A vector of vectors, in which we store only 
non-zero neighbour entries

It looks good on paper! Constant vertex 
access, easy access to neighbours, easy 
to modify, lower memory footprint
● But is has plenty of drawbacks

Practical uses: 
easy insertion of vertices and edges, use objects 
to represent vertices

Can also be implemented as HashMap,
with some pros and cons

Adjacency List - 1 13
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Cost of operations
● Random vertex access: 1
● Random edge lookup: O(V) (need to iterate all 

neighbors). O(logV) if binary search

● Neighbour iteration: O(V) out-neigh.,
O(☠) in-neigh (you need another adj. list)

● Adding edge: O(1) amortized, O(V) if inserted 
sorted

● Removing/updating edge: O(V)
● Adding vertex: O(1) amortized, it depends on the 

implementation

Adjacency List - 2 14
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● Storing vertex properties: implementation 
dependent, e.g. using vertex objects, or additional 
vectors of size |V|

● Storing edge properties: implementation dependent, 
e.g. using Edge objects in a map
HashMap<Tuple<VertexID, VertexID>, Edge>

● Hardware friendliness: not good, traversal requires 
many lookups/memory accesses, neighbors arrays 
are not contiguous.
Even worse if implemented through hashmap,
as you have further overheads (hashing) and conflicts

Adjacency List - 3 15
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COOrdinate format, just a list of all the edges (not 
necessarily sorted). Use 1 or more vectors for 
edge-weights

Also used for the MTX file format

Practical uses: the simplest way to store a graph 
in a file. Streaming computations that require 
sequential access to all edges (e.g. PageRank)

Storing vertex/edge properties: 
extra vectors |V| and |E|

COO - 1 16
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Cost of operations
● Random edge/vertex access: O(☠). O(E), don't.

● Neighbour iteration: O(☠). 
Possibly O(E), we don't know where each vertex starts 
(even worse if vertices are not contiguous!)

● Adding vertex/edge: O(1) amortized, if we allow 
non-contiguous edges. Otherwise O(E)

● Removals: O(E)
Note: if sorted w.r.t x and y, we can use binary search, with 
cost O(log(E)), and improve some operations. Complexity is 
still extremely bad.  E.g. find if a random edge exists: binary 
search on x, then linear scan on y, complexity O(log(E) + V)

COO - 2 17
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All operations have super bad complexity! 
Is this data-structure useless for practical 
computations?

Not really, it's very very good for streaming edge 
processing, e.g. count all links with a certain value

Extremely easy to pipeline and parallelize, and 
cache friendly

Notes on parallelization
● If we just need to scan the edges, simply split 

the COO in equal partitions
● If we need to aggregate properties 

vertex-wise (e.g. PageRank), ensure that 
edges starting from a single vertex are not 
split, or have additional “aggregation logic”

COO - 3 18



07/11/2020Alberto Parravicini

Compressed Sparse Row (CSR) format

Keep a vector with cumulative degree of all 
vertices (called ptr), then vectors idx and 
val identical to the y and val vectors in COO

● Why cumulative degree? It allows fast 
access to out-neighbors

● ptr has size V+1, there is a starting 0
Practical uses: almost every graph 
algorithm (or sparse matrix computation) 
on static graphs, e.g. BFS

CSR - 1 19
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COO-to-CSR, if COO is sorted 

CSR - 2 20

std::vector<int> ptr(V + 1, 0); // All zeros;

std::vector<int> idx(y) // Copy y into idx;

std::vector<float> val(val_coo) // Copy val_coo into val;

int curr_row = 0; int curr_sum = 0

for (int i = 0; i < E; i++) {

    int diff = (i > 0) ? (x[i] - x[i - 1]) : x[i];

    if (diff > 0) 

        for (int j = 0; j < diff; j++) 

            ptr[++curr_row] = curr_sum;    

    curr_sum++;

}

// Handle edge-less vertices at the end;

for (int i = curr_row + 1; i < V + 1; i++) 

    ptr[i] = curr_sum;

Assume x and y are sorted!
O(E) complexity if sorted, else O(E log(E))
idx/val must be sorted w.r.t. x in the COO!
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Cost of operations
● Vertex lookup: 1

● Edge lookup: O(V), require traversing all 
neighbors; O(log(V)) with binary search

● Out-neighbors iteration: O(V), very efficient

● In-neighbors iteration: O(☠)
● Adding vertices: O(1) amortized 

● Adding edges: O(1) at the end, else O(E)
● Removals: O(1) at the end, else O(E)

CSR - 3 21
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CSR is somewhat similar to adjacency list, but 
harder to update

But CSR is also much more 
hardware-friendly: based on array lookups, 
and arrays are contiguous.

Parallelization
● Very easy row parallelization (split ptr)
● This parallelization is not always ideal (imbalance), 

but it's easy and ok in most cases
● Other option: create P partitions with average size 

E / P, and split ptr accordingly 

CSR - 4 22
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Building a smart CSR partitioning for parallelization
● Idx has size E, we want P partitions (here, E=7, 

P=2)
● First partition P0 should end around floor(E/P) = 3
● Binary search on ptr for 3

● We might not find 3, instead look for 
ptr[p_i] <= 3 && ptr[p_i+1] >= 3

● Here p_i = 1
● Partition P0 includes vertices 0 and 1,

and idx up to ptr[p_i+1] 
● Repeat for second partition (it should end around 

floor(2E/P))
● Repeat for all the other partitions
● Cost: O(log(V)P)

CSR - 5, Smart Partitioning 23
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Compressed Sparse Column (CSC) format

Same as CSR, but store incoming edges 
instead of outgoing edges

Practical uses:  like CSR, useful in applications 
requiring incoming edges, e.g. PageRank

CSC - 1 24
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CSC can be created from COO 
just like CSR, swapping x and y 
(transposed matrix)

CSR-to-CSC or vice-versa is 
terrible, don't do it. Use a COO as 
temporary data structure

It's common to store both CSR 
and CSC to represent graphs, to 
have fast out and in neighbors 
iteration

CSC - 2 25
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BSR (Block Compressed Row): a CSR with dense 
matrices instead of scalar values, used for 
block-sparse matrices. A list of dense matrices with 
additional information about start/size of each matrix

GraphTinker and STINGER: very complex 
data-structures for dynamic graphs. 

Extension of CSR with edge-blocks connected through 
linked lists or hash-maps, and meta-data to check if a 
value is valid or not. They allow a given number of 
updates, followed by compaction/cleanup

Other Data Structures 26

https://stackoverflow.com/q
uestions/37209998/solving-l
arge-linear-systems-with-bl
ock-sparse-matrices

https://ieeexplore.ieee.org
/document/8821003

https://ieeexplore.ieee.org
/document/6408680

https://stackoverflow.com/questions/37209998/solving-large-linear-systems-with-block-sparse-matrices
https://stackoverflow.com/questions/37209998/solving-large-linear-systems-with-block-sparse-matrices
https://stackoverflow.com/questions/37209998/solving-large-linear-systems-with-block-sparse-matrices
https://stackoverflow.com/questions/37209998/solving-large-linear-systems-with-block-sparse-matrices
https://ieeexplore.ieee.org/document/8821003
https://ieeexplore.ieee.org/document/8821003
https://ieeexplore.ieee.org/document/6408680
https://ieeexplore.ieee.org/document/6408680
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Intro to PGQL

Graph query operators

Root Match

Neighbour Match

Edge Match

Common Neighbour Match

Graph query languages and operators 27
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SQL doesn’t really work well with graph data

● Paths on the graph are very complex JOINs
● What about arbitrary length paths (e.g. “is there a path 

between  … and …?”)

We want a language with graphs in mind!

Different options exists, but no common standard

● PGQL, pgql-lang.org/

● SPARQL (built for RDF, not graphs), www.w3.org/TR/rdf-sparql-query

● Gremlin, tinkerpop.apache.org/gremlin.html

● Cypher, neo4j.com/developer/cypher

Intro to PGQL - 1 28

https://tinkerpop.apache.org/gremlin.html
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Here we see PGQL (Property Graph Query Language)

PGQL is an SQL-based query language for the property graph 
data model. 
It allows you to specify high-level graph patterns which are 
matched against vertices and edges in a graph

We’ll learn how to use it with some examples

Intro to PGQL - 2 29

XSELECT v3.ID
MATCH (v1) -> (v2) -> (v3)
WHERE v1.ID == 1 AND v3.ID > 1

ANSWER: 2
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PGQL by Examples 30
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student_network: graph label
n: variable name
Person: vertex label
n.name: name is a property
(n:Person): vertex pattern

Selection of properties 
to be displayed 

Data source from which 
we extract data

Graph pattern to search

PGQL by example 31
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-[e:knows]-> is an edge pattern in which e 
is a variable name and :knows a label expression

-> indicates edges outgoing from a

Edge Patterns 32
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The bar operator (|) is a logical OR for specifying that a vertex or edge 
should match as long as it has either of the specified labels.

Label Disjunction 33
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Label expressions may be omitted so that the vertex or edge pattern 
will then match any vertex or edge.

Label Omission 34
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Filter predicates provide a way to further restrict which vertices or edges 
may bind to patterns. A filter predicate is a boolean value expression and 
is placed in a WHERE clause.

Filter Predicates 35
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“find people that Lee knows and that are a student at the same university as Lee”

Above, in the MATCH clause there is only one path pattern that consists of 
four vertex patterns and three edge patterns. Note that the first and last vertex 
pattern both have the variable u.

Complext Patterns 36
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The previous query may be expressed through 
multiple comma-separated path patterns, like this:

Separating match patterns 37
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In a single solution it is allowed for a vertex or an edge to be bound to multiple variables 
at the same time, i.e. (p1) and (p3) can be the same vertex
For example, “find friends of friends of Lee” (friendship being defined by the presence of a 
‘knows’ edge):

Binding a vertex many times 38
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If such binding of vertices to multiple variables is not desired, one can use either 
non-equality constraints or the ALL_DIFFERENT predicate.

predicate p1 <> p3 in the query below adds the restriction that Lee, 
which has to bind to variable p1, cannot also bind to variable p3

Non-equalities 39
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It is also possible for edges to bind to multiple variables 
(i.e. different names but they refer to the same edge).
For example, “find two people that both know Riya”

Binding an edge many times 40
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Any-directed edge patterns match edges in the graph no matter if they are incoming or outgoing

In case there are both incoming and outgoing data edges between two data vertices, 
there will be separate result bindings for each of the edges.

Common path expressions:

The above query will return all pairs of 
vertices n and m 
that are reachable via a multiple of two edges, 
each edge being either an incoming or an outgoing 
edge.

Match edges in any direction 41
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We need to translate our high-level queries to basic operations 
on our data-structures

It’s a complex problem! What operators do we need, how do we 
apply them?

Here we see a few basic operators. In the contest, you will 
implement and optimize one of them (neighbour match)

Graph Query Operators - 1 42
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Root Match: matches all root vertices

Constant vertex match: root match optimized for unique 
vertices

Neighbor Match: given a vertex, matches all its neighbors 

Edge Match: given two vertices, checks if they are connected 
via an edge

Common Neighbor Match: given two vertices, matches all 
common neighbors

Cartesian product: combine results of different operators

Graph Query Operators - 2 43
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Similar to a table scan in a DB, it fetches all vertices. Optionally, 
apply filters or projections

Done by scanning the data-structure representing vertices

Root Match 44

SELECT a
MATCH (a) 

a

0

1

2

3

4

SELECT a
MATCH (a)
WHERE a > 2 

a

3

4

SELECT SUM(a)
MATCH (a)
WHERE a > 2 

SUM(a)

7

SELECT a
MATCH (a) 
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Root match operator specialized for unique vertices

If we are matching a vertex that we know is unique (e.g. filter condition on 
index/key), we can (and should) be faster than standard root match

Implementation: key match on a set/hash-map, O(1), but requires additional 
data-structure

Queries rooted on a unique vertex are common, still worth optimizing for! 
Think about queries like “find all passengers who took a flight from MPX last 
week”

Constant Vertex Match 45

SELECT a
MATCH (a)
WHERE a.ID = 1  

a

1

SELECT a
MATCH (a)
WHERE a.ID = 1 
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Similar to a table JOIN in a DB, it retrieves the neighbours of one 
or more input vertices

Leverage the CSR for fast traversal, or perform a table JOIN

Neighbour Match - 1 46

SELECT a, b
MATCH (a)->(b) 

a

1

2

a b

1 0

1 3

1 4

2 0

2 1IN
OUT

SELECT a, b
MATCH (a)->(b) 

Consider only some 
vertices in this example
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Matching with depth > 1 requires care
● Avoid repeating matches for the same vertex (e.g. 0)
● Some vertices don’t have outgoing edges (e.g. 3)

Neighbour Match - 2 47

SELECT a, b, c
MATCH (a)->(b)->(c) 

a

1

2

a b

1 0

1 3

1 4

2 0

2 1

a b c

1 0 3

1 4 3

2 0 3

2 1 0

2 1 3

2 1 4

SELECT a, b, c
MATCH (a)->(b)->(c) 

BF Traversal
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With depth > 1, we do a Breadth-First or Depth-First Traversal
BF: match all (a), then all (b), then all (c)

Easy to parallelize, but requires storing a lot of intermediate results
DF: match one (a), then one (b), then all (c) w.r.t. that (b), then another (b), 
then all (c) w.r.t. that (b), etc.

Low memory consumption, O(depth) instead of O(width), but difficult to 
parallelize, and might require multiple accesses to repeated neighbours

 We can combine both approaches for best performance!

Neighbour Match - 3 48

a

1

2

a b

1 0

a b c

1 0 3

SELECT a, b, c
MATCH (a)->(b)->(c) 

a b

1 3
☠

... DF Traversal
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BF: use a queue (FIFO). DF: use a stack (LIFO)
In both cases keep track of visited vertices (e.g. with a set)
Here I visit the entire graph and store distances from the source

Skeleton of BF and DF traversal 49

void bf(std::vector<int> &ptr, std::vector<int> &idx, 

std::vector<int> &res, int start_index = 0) {

    std::queue<int> frontier;

    frontier.push(start_index);

    std::unordered_set<int> seen;

    res[start_index] = 0;

    while (frontier.size() > 0) {

        int curr_elem = frontier.front();

        frontier.pop();

        seen.insert(curr_elem);

        for (int i = ptr[curr_elem]; i < ptr[curr_elem + 1]; i++) {

            int child = idx[i];

            res[child] = std::min(res[child], res[curr_elem] + 1);

            if (seen.find(child) == seen.end()) {

                frontier.push(child);

            }        }     }}

void df(std::vector<int> &ptr, std::vector<int> &idx, std::vector<int> 

&res, int start_index = 0) {

    std::stack<int> stack;

    stack.push(start_index);

    std::unordered_set<int> seen;

    res[start_index] = 0;

    while (stack.size() > 0) {

        int curr_elem = stack.top();

        stack.pop();

        seen.insert(curr_elem);

        for (int i = ptr[curr_elem]; i < ptr[curr_elem + 1]; i++) {

            int child = idx[i];

            res[child] = std::min(res[child], res[curr_elem] + 1);

            if (seen.find(child) == seen.end()) {

                stack.push(child);

            }        }     }}
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After matching (b), don’t apply neighbour match to (b)

Instead, apply binary search in the outgoing neighbourhood
of (b) to find (a)

Edge Match 50

SELECT a, b
MATCH 
(a)->(b)->(a) 

a

2

3

a b

2 0

2 1

3 1

a b

3 1

SELECT a, b
MATCH (a)->(b)->(a)

Binary search 
instead of 
linear scan from 
idx[1] to idx[3]
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Option 1: neighbourhood match from (a), neighbourhood match 
from (b) to (c) using a CSC. Cost = O(V) + O(V)2

Option 2: neighbourhood match from (a), then binary search in 
the neighbourhood of (c)  to find common neighbours. 
Alternatively, neighbour match from (c)  followed by set 
intersection. Cost = O(V•log(V)) or 3•O(V)
Cost is misleading as very dependent on number of neighbours

Common Neighbor Match 51

SELECT a, b, c
MATCH (a)->(b)<-(c) 

a c

1 2

SELECT a, b, c
MATCH (a)->(b)<-(c)

a b c

1 0 2
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Combine results from different operators, by computing all 
possible combinations

Used when no other operator can be applied, e.g. when 
combining separate MATCH patterns

It’s your last resort: it’s expensive, and causes
a quadratic increase in result size

Cartesian Product 52

SELECT a, b, c, d
MATCH (a)->(b), (c)->(d)
WHERE a.ID = 1, b.ID = 2

a b

1 0

1 2

1 4

SELECT a, b, c, d
MATCH (a)->(b), (c)->(d)
WHERE a.ID = 1, c.ID = 2

a b c d

1 0 2 0

1 0 2 1

1 2 2 0

1 2 2 1

1 4 2 0

1 4 2 1

c d

2 0

2 1
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Small pills of query planning

Think what happens if you apply Cartesian Product before WHERE

● You compute all edges in the graph twice,  2O(E)
● You compute all combinations of edges, O(E)2

● Then you filter the edges, O(E)2

Instead, computing the filter before neighbour match
and Cartesian is way way better!

Cartesian Product - 2 53

SELECT a, b, c, d
MATCH (a)->(b), (c)->(d)
WHERE a.ID = 1, c.ID = 2

Worst case plan on our graph:
1. Neighbourhood match, twice: 2*8
2. All combinations: 82

3. Filter edges: 82

Total: 208 operations

Best case plan on our graph:
1. Root match on a and c: 2*1
2. Neigh. match on a=1 and c=2: 3 + 2
3. Cartesian product: 3 * 2 
Total: 13 operations, 16x better!
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Hash-Join

More Hash-Join

Even more Hash-Join

Quick overview of Hash-Join 54



07/11/2020Alberto Parravicini

Starting point: a graph stored as a table
Here, 2 columns x, y but we could have other columns (edge properties)

Storing graphs as tables 55

index x y
0 A B

1 A D

2 A E

3 B C

4 B F

5 B H

6 B L

7 C A

8 C B

9 D A

10 D C

11 D F

We are not limited to integer values

To quickly retrieve neighbours, we can build a 
hash-table on column x
● Not much different from an adjacency list on x as key, 

built with an underlying hash-table
● But we must be aware of the underlying hash-table 

implementation!
● Here, simplified situation as we have only in-memory 

data
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Ideally, each vertex will map to a different row of the hash-table
Hash function: a function s.t. (ideally) h(x1) = h(x2) ↔ x1 = x2 

Hash-table, idealized view 56

index x y
0 A B

1 A D

2 A E

3 B C

4 B F

5 B H

6 B L

7 C A

8 C B

9 D A

10 D C

11 D F

What if h(x1) = h(x2) 
for x1 != x2? 
We have a conflict

Conflicts will happen 
unless the codomain 
of h(.) is |V|
Using hash-tables gives the 
flexibility of non-int keys 
and dynamic graphs

key val
h(x=A) 0,1,2

h(x=B) 3,4,5,6

h(x=C) 7,8

h(x=D) 9,10,11

We store rows 
indices. If you have 
just 2 columns, 
might as well store y 
directly
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In practice, we have a fixed number of buckets/blocks, equal to 
the codomain of h(.)
● Each block is a list (usually a fixed-size array, the block size)
● After computing h(.), linear scan of the block to find the desired key (if 

lookup) or to find an empty spot (if storing a value)
● If the block is full, we add a new block after it (overflow chain, a linked list 

of blocks). An extensible vector is also ok in our case
● If blocks are too full, we can increase the number of blocks (and change 

h(.) accordingly). This is expensive, as we might have to recompute all the 
existing blocks (if exists a stored value x for which h1(x) != h2(x))

● Rule of thumb: if blocks are filled above 80%, the probability of conflicts is 
so high that the current hash-table is no longer worth using

Hash-table, real implementation 57
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Hash-table, real implementation 58

index x y
0 A B

1 A D

2 A E

3 B C

4 B F

5 B H

6 B L

7 C A

8 C B

9 D A

10 D C

11 D F

key BLOCK B[0] B[1] B[2] B[3]

h(x=A), 
h(x=C)

1 A:0,1,2 C:7,8

h(x=B), 
h(x=D)

2 B: 
3,4,5,6

D: 
9,10,11

Overflow 
chain

2 blocks, each block has size 4

In some implementations, store rows 
directly in block cells, e.g. [A,B], [A,D], 
[A,E] (in 3 blocks cells) instead of 
A:[0,1,2] in 1 cell
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A single join is done as SELECT a.x, b.x FROM a, b WHERE a.y = b.x
1. Find the smaller table (let’s say a)
2. Create a hash-table for b if it doesn’t exist already
3. Iterate on rows of a
4. For each row, lookup the value of a.y on the hash-table of b

a. First find the bucket with h(a.y), then scan to find results
5. Add results of b.x (from the hash-table) to the result

Hash-join - 1 59

SELECT a, b, c
MATCH (a)->(b)->(c) 

SELECT a.x, b.x, c.x
FROM graph_table a, graph_table b, 
graph_table c
WHERE a.y = b.x AND b.y = c.x

OPTIMIZED:
SELECT a.x, b.x, b.y
FROM graph_table a, 
graph_table b
WHERE a.y = b.x
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SELECT a.x, b.y FROM a, b WHERE a.y = b.x

We can optimize this query with an additional hash-table on a.y, using the 
same hash function used for b.x (that’s ok, the range of values is the same)

Now, values values of a.y will have the same block index of values in b.x, 
blocka(y) = blockb(x)

We can perform a block-wise join by processing pairs of blocks (one block 
from a, one from b) in parallel. Each graph vertex will fall in the same block in 
both hash-tables! This also enables efficient processing disk-resident data

More info: www.csd.uoc.gr/~hy460/pdf/p63-mishra.pdf

Hash-join - 2 60
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Hash-join - 2 61

index x y
0 A B

1 A D

2 A E

3 B C

4 B D

5 B E

6 B F

7 C A

8 C B

9 D A

10 D C

11 D F

key BLOCK B[0] B[1] B[2] B[3]

h(x=A), 
h(x=C)

1 A:0,1,2 C:7,8

h(x=B), 
h(x=D)

2 B: 
3,4,5,6

D: 
9,10,11

Overflow 
chain

key BLOCK B[0] B[1] B[2] B[3]

h(x=A), 
h(x=C), 
h(x=E)

1 A:7,9 C:3,10 E: 2,5

h(x=B), 
h(x=D),
h(x=F)

2 B: 0,8 D: 1,4 F:6,11

H1: Hash-table on x

H2: Hash-table on y

Join B1 in H1 with 
B1 in H2, and B2 
in H1 with B2 in 
H2Start from rows in H2: B[0] tells us that rows 7,9 ends with A. Now 

find key A in H1, and create results joining rows 7,9 with 0,1,2
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Graph-Traversal VS Hash-Join Contest Overview

And finally... 62
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The goal of this challenge consists in implementing what you 
learned about CSR and Hash-Join, and implement a simple 
query execution engine able to perform a set of predefined 
simple queries.

Important references

● Repository with README and code: 
github.com/AlbertoParravicini/high-performance-graph-analytics-2020

● For any question: alberto.parravicini@polimi.it
● Contest start: NOW
● Contest end: December 9th 2020, 11.59 PM (Milan Time!)

Graph-Traversal VS Hash-Join 
Contest Overview 63
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Dataset

POCEK, the most popular online social network in Slovakia

1.6M vertices, 30M edges, we only care about the graph topology 
(i.e. friendship relations)

Protip: start loading and working with a smaller subgraph!

https://snap.stanford.edu/data/soc-Pokec.html

Graph-Traversal VS Hash-Join 
Contest Overview 64
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4 Tasks

1. Load the dataset, and store the graph in a CSR and a Tabular 
format. You should be able to load a subgraph too

2. CSR Traversal and Hash-Join, you should implement the 
Neighbour Match operator in these 2 ways

3. Benchmark some queries! (a)->(b), (a)->(b)->(c), 
(a)->(b)->(c)->(d), etc. Which implementation is faster? 
Which uses your hardware more efficiently/effectively?

4. Build a data-driven heuristic, to pick the best implementation 
based on the data and query

Graph-Traversal VS Hash-Join 
Contest Overview 65
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And finally… Write a report

● Submission before December 9th 11.59 PM 2020, Milan time
● Email to alberto.parravicini@polimi.it, CC to 

guidowalter.didonato@polimi.it and marco.santambrogio@polimi.it
● In the email: 

names of participants, link to GitHub repo, PDF copy of report

Repository:

● The source code
● A README that explains how to execute your solution
● A 4-pages report written in Latex describing your findings in tasks 3 and 4, 

a description of your heuristic, and any other implementation decision you 
took that you'd like to share with us

Graph-Traversal VS Hash-Join 
Contest Overview 66

mailto:alberto.parravicini@polimi.it
mailto:guidowalter.didonato@polimi.it
mailto:marco.santambrogio@polimi.it


07/11/2020Alberto Parravicini

Additional notes (please refer to 
github.com/AlbertoParravicini/high-performance-graph-analytics-2020/blob
/main/track-graph-query/README.md)

● Your code must be buildable with standard tools like Maven
● Use Java. Other JVM based languages (e.g. Scala) are ok if you can 

properly justify their usage
● Tests must be runnable using a Bash or Python script
● The easier for us to replicate your results, the better it is for you!
● External libraries are allowed, as long as you justify their usage and the 

core of the implementation is written by you. You can use existing 
CSR/Hash-Join implementations, but only as a performance comparison 
against your custom implementation

● The report should be 4 pages long at most, and written in double-column 
Latex, with font-size 10pt

Graph-Traversal VS Hash-Join 
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In the repository you’ll find the skeleton of 4 classes. Feel free to 
extend them as you like. You can change the existing interfaces, 
but justify any change!
CompressedSparseRow Basic CSR class, it offers 2 methods

void buildFromFile(String filepath) 
ArrayList<Integer> getNeighbors(Integer vertex_id)

Table Basic tabular graph implementation
void BuildFromFile(String filepath)

CSREngine Given a CSR and a Integer, return neighbours
ArrayList<Integer> traverse(CompressedSparseRow csr, Integer vertex_id)

HashJoinEngine Given a Table and a Integer, return neighbours
ArrayList<Integer> join(Table tab1, Integer element_id);

Graph-Traversal VS Hash-Join 
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These functions are just a sketch. You’ll need something more!
Query parser: to turn queries into a list of operations. It’s very simple, as all 
queries have form (a)->(b)->(c)->...

Extend the query operators: instead of providing just an integer to the 
traverse/join functions, you can pass a list of vertices or even a full 
graph/table, to optimize the overall computation

Use a Graph or Vertex class: using objects to represent vertices might help in 
some cases (e.g. track seen vertices in traversal). Be careful with overheads 
though! Also, instead of building CSR/Table directly from a file you can use an 
intermediate Graph data structure and build CSR/Table from it

Evaluating index creation overheads: building CSR and Hash-tables has a cost 
that must be properly accounted for in benchmarks. For example, you can 
amortize the creation cost over the cost of 100 queries vs just 1 query.

Graph-Traversal VS Hash-Join 
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