

Alberto Parravicini alberto.parravicini@polimi.it

POLITECNICO MILANO 1863
NE

Graph Queries - The Big Picture

"Find all friends of Alberto who are older than 30"
"What's the lowest number of airport layovers if going from Malpensa to Timbuktu" (Answer: 1, Casablanca)
"Find all money exchanges between people in

SELECT v3.ID
MATCH (v1) -> (v2) -> (v3)
WHERE v1.ID == 1 AND v3.ID > 1 Milan in the last 24 hours"

Things get out of hands quickly! Graph queries can be extremely complex, operate on extremely large data, and require extremely
 quick results

Graph Queries - The Big Picture

"Find all friends of Alberto who are older than 30"
"What's the lowest number of airport layovers if going from Malpensa to Timbuktu" (Answer: 1, Casablanca)
"Find all money exchanges between people in Milan in the last 24 hours"

Things get out of hands quickly! Graph queries can be extremely complex, operate on extremely large data, and require extremely

SELECT v3.ID
MATCH (v1) -> (v2) -> (v3)
WHERE v1.ID == 1 AND v3.ID > 1

ANSWER: 2

Graph Oueries - What do we need

Mostly, we see again - more in depth - topics seen before

Data structures for graphs

- Space-efficient
- Fast to query (and paralle!!), and (sometimes) easy to update
- Can we leverage DB data-structures?(Answer: sometimes)

A language to define queries

- SOL doesn't really work well
- We need a query language built with graphs in mind

A set of operators

- We need to map queries in our "language" to actions on the graphs

A way to apply operators

- Broadly speaking "query planning", here we focus on a specific case

Graph Oueries - Why do we care

Why do we talk about graph queries in this course?

It's challenging from a Computer Science perspective

- Lots of possible optimizations
- Performance depends on data
- Opportunities for parallelism
- Hardware knowledge required

Plenty of research opportunities

- Ever-increasing data size and new hardware presents new possibilities and challenges
- Data-driven optimization, heterogeneous architectures, 3D Xpoint SSDs, etc.
- Even our contest is an open research problem

Our contest:
 Graph=Traversal VS Hash=Join

Don't worry, we'll see later all the technical details!

What are you gonna do?

Neighbour match is a common graph operator
Given a vertex, retrieve neighbours $1,2, \ldots, N$ hops away
There are 2 ways to implement it

- Graph traversal
- Table JOIN

But... which is faster? And when? Can you combine them to get a super fast adaptive implementation?

Graph data structures for everyone

Adjacency matrix
Adjacency list
COO
CSR
Also used for sparse
linear algebra
CSC
Other stuff

Adjacency Matrix - 1

Just a dense matrix with non-zero entries representing edges
Practical uses: almost none, used for very fast random access to in-neighbours AND out-neighbours, and algorithms that use dense matrices (e.g. GCN)

Biggest drawback: $|\mathrm{V}|^{2}$ storage space Real-world graphs are sparse.
E.g. Wikipedia, 10M vertices, 160M edges Sparsity:
$160 \cdot 10^{6} /\left(10 \cdot 10^{6}\right)^{2}=0.0000016$,
1 out of 625000 is non-zero

if using 1 bit for each value, 12TB

Adjacency Matrix - 2

Cost of operations

V: number of vertices,
E: number of edges
Note: I'm using $\mathrm{O}(\ldots)$ if necessary, precise values where possible

- Random access: 1
- Neighbour iteration: V, in \& out
- It's bad, neighbourhoods are sparse!
- Adding edge: 1
- Modifying/removing edge: 1

- Actually $\mathrm{O}(\mathrm{V})$ amortized if using vector of vectors or $\mathrm{O}(\mathrm{E})$ if using a single vector (see next slide). Either way, if you need to add a lot of vertices, you are using the wrong data structure

Adjacency Matrix - 3

Quick recap on how to implement matrices!

- Vector of vectors

```
std::vector<std::vector<int>> G(V);
// Init sub-vectors...
for (int i = 0; i < V; i++)
    for (int j = 0; j < V; j++)
    G[i][j] = ... // Access;
```

std: : vector<int> G(V * V);

- A single array (or vector) for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{v} ; \mathrm{i}+\boldsymbol{+})$

```
    for (int j = 0; j < V; j++)
    G[i * V + j] = ... // Access;
```

- A single array is usually faster (access is 1 memory access instead of 2 , and it's more cache-friendly). But vector of vectors is easier to manipulate

Adjacency Matrix - 4

Keep in mind the difference between column-wise and row-wise allocation

- Row-wise: linear scan of rows (out-neighbours), "jumps" between columns
- Column-wise: linear scan of columns (in-neighbours), "jumps" between rows
- Don't mix row-wise allocation with column-wise iteration (or vice-versa)!
You'll get terrible performance due to "jumps" causing cache misses

```
std::vector<int> G(V * V);
```

for (int i = 0; i < V; i++)

```
for (int i = 0; i < V; i++)
    for (int j = 0; j < V; j++)
    for (int j = 0; j < V; j++)
        G[j*V + i] = ... // %
```

```
        G[j*V + i] = ... // %
```

```


\section*{Adjacency Matrix - 5}
- Storing vertex properties: additional vectors, use linear algebra (e.g. matrix-vector multiplication) to propagate properties across the topology
\[
\text { Example, PageRank equation ( } \mathbf{X} \text { is the graph): } \mathbf{p}_{\mathbf{t}+1}=\alpha \mathbf{X} \mathbf{p}_{\mathbf{t}}+\frac{\alpha}{|V|}\left(\overline{\mathbf{d}} \mathbf{p}_{\mathbf{t}}\right) 1+(1-\alpha) \overline{\mathbf{v}}
\]
- Storing edge properties: use values instead of \(0 / 1\) in the matrix. Use more matrices (i.e. a tensor) for additional properties (space inefficient!)
- Hardware friendliness: very good, easy to parallelize and exploit cache, plenty of techniques from numerical computing (blocks, rows, columns)


\section*{Adjacency List - 1}

A vector of vectors, in which we store only non-zero neighbour entries

It looks good on paper! Constant vertex access, easy access to neighbours, easy to modify, lower memory footprint
- But is has plenty of drawbacks

Practical uses:
easy insertion of vertices and edges, use objects to represent vertices

Can also be implemented as HashMap, with some pros and cons


\section*{Adjacency List - 2}

\section*{Cost of operations}
- Random vertex access: 1
- Random edge lookup: \(\mathrm{O}(\mathrm{V})\) (need to iterate all neighbors). \(\mathrm{O}(\log \mathrm{V})\) if binary search
- Neighbour iteration: \(\mathrm{O}(\mathrm{V})\) out-neigh., \(0\left({ }^{\circ}\right.\)
- Adding edge: \(\mathrm{O}(1)\) amortized, \(\mathrm{O}(\mathrm{V})\) if inserted sorted
- Removing/updating edge: \(\mathrm{O}(\mathrm{V})\)
- Adding vertex: \(\mathrm{O}(1)\) amortized, it depends on the implementation


\section*{Adjacency List - 3}
- Storing vertex properties: implementation dependent, e.g. using vertex objects, or additional vectors of size \(|\mathrm{V}|\)
- Storing edge properties: implementation dependent, e.g. using Edge objects in a map HashMap<Tuple<VertexID, VertexID>, Edge>
- Hardware friendliness: not good, traversal requires many lookups/memory accesses, neighbors arrays are not contiguous.
Even worse if implemented through hashmap, as you have further overheads (hashing) and conflicts


\section*{COO-1}

COOrdinate format, just a list of all the edges (not necessarily sorted). Use 1 or more vectors for edge-weights

Also used for the MTX file format
Practical uses: the simplest way to store a graph in a file. Streaming computations that require sequential access to all edges (e.g. PageRank) Storing vertex/edge properties:
extra vectors \(|\mathrm{V}|\) and \(|\mathrm{E}|\)


\section*{COO-2}

\section*{Cost of operations}
- Random edge/vertex access: O(\%). O(E), don't.
- Neighbour iteration: O(\%).

Possibly \(\mathrm{O}(\mathrm{E})\), we don't know where each vertex starts (even worse if vertices are not contiguous!)

- Adding vertex/edge: \(\mathrm{O}(1)\) amortized, if we allow non-contiguous edges. Otherwise \(\mathrm{O}(\mathrm{E})\)
- Removals: O(E)

Note: if sorted w.r.t x and \(y\), we can use binary search, with cost \(O(\log (E))\), and improve some operations. Complexity is still extremely bad. E.g. find if a random edge exists: binary search on \(x\), then linear scan on \(y\), complexity \(O(\log (E)+V)\)
\begin{tabular}{|c|c|c|}
\hline 11 & 4 & \[
\stackrel{\ddot{0}}{\|}
\] \\
\hline 1 & 0 & 0.5 \\
\hline 2 & 0 & 0.5 \\
\hline 2 & 1 & 0.5 \\
\hline 3 & 2 & 1 \\
\hline 1 & 3 & 0.5 \\
\hline 4 & 3 & 1 \\
\hline
\end{tabular}

\section*{COO-3}

All operations have super bad complexity!
Is this data-structure useless for practical computations?

Not really, it's very very good for streaming edge processing, e.g. count all links with a certain value
Extremely easy to pipeline and parallelize, and cache friendly

\section*{Notes on parallelization}
- If we just need to scan the edges, simply split the COO in equal partitions
- If we need to aggregate properties vertex-wise (e.g. PageRank), ensure that edges starting from a single vertex are not split, or have additional "aggregation logic"


\section*{CSR-1}

Compressed Sparse Row (CSR) format
Keep a vector with cumulative degree of all vertices (called ptr), then vectors idx and val identical to the y and val vectors in COO
- Why cumulative degree? It allows fast access to out-neighbors
- ptr has size \(\mathrm{V}+1\), there is a starting 0

Practical uses: almost every graph algorithm (or sparse matrix computation) on static graphs, e.g. BFS


\section*{Assume \(\mathbf{x}\) and \(\mathbf{y}\) are sorted!}

\section*{CSR-2} \(\mathrm{O}(\mathrm{E})\) complexity if sorted, else \(\mathrm{O}(\mathrm{E} \log (\mathrm{E}))\) idx/val must be sorted w.r.t. \(x\) in the COO!

\section*{COO-to-CSR, if COO is sorted}
```

std::vector<int> ptr(V + 1, 0); // All zeros;
std::vector<int> idx(y) // Copy y into idx;
std::vector<float> val(val_coo) // Copy val_coo into val;
int curr_row = 0; int curr_sum = 0

```
for (int \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{E}\); \(\mathrm{i}++\) ) \{
    int diff \(=(i>0)\) ? \((x[i]-x[i-1]): x[i] ;\)
    if (diff >0)
        for (int \(j=0 ; j<d i f f ; j++\) )
        ptr[++curr_row] = curr_sum;
    curr_sum++;
\}
// Handle edge-less vertices at the end;
for (int i = curr_row + 1; i < V + 1; i++)
    ptr[i] = curr_sum;
\begin{tabular}{|c|c|c|}
\hline 11 & 4 &  \\
\hline 0 & 3 & 1 \\
\hline 1 & 0 & 0.5 \\
\hline 1 & 3 & 0.5 \\
\hline 1 & 4 & 0.5 \\
\hline 2 & 0 & 1 \\
\hline 2 & 1 & 0.5 \\
\hline 4 & 3 & 1 \\
\hline
\end{tabular}


\section*{CSR - 3}

\section*{Cost of operations}
- Vertex lookup: 1
- Edge lookup: \(\mathrm{O}(\mathrm{V})\), require traversing all neighbors; \(\mathrm{O}(\log (\mathrm{V}))\) with binary search
- Out-neighbors iteration: \(\mathrm{O}(\mathrm{V})\), very efficient
- In-neighbors iteration: O(~)
- Adding vertices: \(\mathrm{O}(1)\) amortized
- Adding edges: \(\mathrm{O}(1)\) at the end, else \(\mathrm{O}(\mathrm{E})\)
- Removals: O(1) at the end, else O(E)


\section*{CSR-4}

CSR is somewhat similar to adjacency list, but harder to update

But CSR is also much more hardware-friendly: based on array lookups, and arrays are contiguous.

\section*{Parallelization}
- Very easy row parallelization (split ptr)
- This parallelization is not always ideal (imbalance), but it's easy and ok in most cases
- Other option: create \(P\) partitions with average size \(E / P\), and split ptr accordingly


\section*{CSR - 5, Smart Partitioning}

\section*{Building a smart CSR partitioning for parallelization}
- Idx has size \(E\), we want \(P\) partitions (here, \(E=7\), \(\mathrm{P}=2\) )
- First partition \(P_{0}\) should end around floor(E/P) \(=3\)
- Binary search on ptr for 3
- We might not find 3, instead look for
\[
\operatorname{ptr}\left[p_{-} \mathrm{i}\right]<=3 \& \& \operatorname{ptr}\left[\mathrm{p}_{-} \mathrm{i}+1\right]>=3
\]
- Here p_i = 1
- Partition \(\mathrm{P}_{0}\) includes vertices 0 and 1 , and idx up to ptr[p_i+1]

- Repeat for second partition (it should end around floor(2E/P))
- Repeat for all the other partitions
- Cost: \(\mathrm{O}(\log (\mathrm{V}) \mathrm{P})\)

\section*{CSC - 1}

Compressed Sparse Column (CSC) format Same as CSR, but store incoming edges instead of outgoing edges
Practical uses: like CSR, useful in applications requiring incoming edges, e.g. PageRank


\section*{CSC - 2}

CSC can be created from COO just like CSR, swapping \(x\) and \(y\) (transposed matrix)
CSR-to-CSC or vice-versa is terrible, don't do it. Use a COO as temporary data structure It's common to store both CSR and CSC to represent graphs, to have fast out and in neighbors iteration


\section*{Other Data Structures}

BSR (Block Compressed Row): a CSR with dense matrices instead of scalar values, used for block-sparse matrices. A list of dense matrices with additional information about start/size of each matrix

GraphTinker and STINGER: very complex data-structures for dynamic graphs.


Extension of CSR with edge-blocks connected through linked lists or hash-maps, and meta-data to check if a value is valid or not. They allow a given number of updates, followed by compaction/cleanup
https://stackoverflow.com/q
uestions/37209998/solving-1
arge-linear-systems-with-bl
ock-sparse-matrices
https://ieeexplore.ieee.org /document/8821003
https://ieeexplore.ieee.org
/document/6408680

\section*{Graph query languages and operators}

Intro to PGQL
Graph query operators
Root Match
Neighbour Match
Edge Match
Common Neighbour Match

\section*{Intro to PGQL - 1}

SOL doesn't really work well with graph data
- Paths on the graph are very complex JOINs
- What about arbitrary length paths (e.g. "is there a path between ... and ...?")

\section*{We want a language with graphs in mind!}

Different options exists, but no common standard
- PGOL, pgal-lang.org/
- SPARQL (built for RDF, not graphs), www.w3.org/TR/rdf-sparal-query
- Gremlin, tinkerpop.apache.org/gremlin.html
- Cypher, neo4j.com/developer/cypher

\section*{Intro to PGOL - 2}

Here we see PGQL (Property Graph Query Language)
PGOL is an SQL-based query language for the property graph data model.
It allows you to specify high-level graph patterns which are matched against vertices and edges in a graph

We'll learn how to use it with some examples
```

SELECT v3.ID
MATCH (v1) -> (v2) -> (v3)
WHERE v1.ID == 1 AND v3.ID > 1
ANSWER: 2

```


\section*{PGOL by Examples}


\section*{PGOL by example}


\section*{Edge Patterns}
```

SELECT a.name, b.name
FROM student_network
MATCH (a:Person) -[e:knows]-> (b:Person)

```
-[e:knows]-> is an edge pattern in which e is a variable name and :knows a label expression
\(\rightarrow\) indicates edges outgoing from a
\begin{tabular}{|c|c|}
\hline | a.name & b. name \\
\hline | Kathrine & Riya \\
\hline | Kathrine & Lee \\
\hline | Lee & Kathrine \\
\hline
\end{tabular}


\section*{Label Disjunction}

The bar operator (I) is a logical OR for specifying that a vertex or edge should match as long as it has either of the specified labels.
```

SELECT n.name, n.dob
FROM student_network
MATCH (n:PersonlUniversity)

```
\begin{tabular}{|c|c|}
\hline I n.name & \| n.dob \\
\hline | Riya & | 1995-03-20 \\
\hline | Kathrine & | 1994-01-15 \\
\hline I Lee & | 1996-01-29 \\
\hline I UC Berkeley & | <null> \\
\hline
\end{tabular}


\section*{Label Omission}

Label expressions may be omitted so that the vertex or edge pattern will then match any vertex or edge.

\section*{SELECT n.name, n.dob \\ FROM student_network MATCH (n)}
\begin{tabular}{|c|c|}
\hline n. name & n.dob \\
\hline Riya & 1995-03-20 \\
\hline Kathrine & 1994-01-15 \\
\hline Lee & 1996-01-29 \\
\hline UC Berkeley & <null> \\
\hline
\end{tabular}


\section*{Filter Predicates}

Filter predicates provide a way to further restrict which vertices or edges may bind to patterns. A filter predicate is a boolean value expression and is placed in a WHERE clause.
```

SELECT m.name AS name, m.dob AS dob
FROM student_network
MATCH (n) - [e]-> (m)
WHERE n.name = 'Kathrine' AND n.dob <= m.dob
+---------------------

```


\section*{Complext Patterns}
"find people that Lee knows and that are a student at the same university as Lee"
```

SELECT p2.name AS friend, u.name AS university
FROM student_network
MATCH (u:University) <-[:studentOf]- (p1:Person) -[:knows]-> (p2:Person) -[:student0f]-> (u)
WHERE p1.name = 'Lee'

```

Above, in the MATCH clause there is only one path pattern that consists of four vertex patterns and three edge patterns. Note that the first and last vertex pattern both have the variable \(\mathbf{u}\).


\section*{Separating match patterns}

The previous query may be expressed through multiple comma-separated path patterns, like this:

SELECT p2.name AS friend, u.name AS university
FROM student_network
MATCH (p1:Person) -[:knows]-> (p2:Person)
(p1) -[:studentOf]-> (u:University)
, (p2) -[:studentOf]-> (u)
WHERE p1.name = 'Lee'
+------------------------+
| friend | university |
+----------------------
| Kathrine | UC Berkeley |
\(+-----------------------~\)


\section*{Binding a vertex many times}

In a single solution it is allowed for a vertex or an edge to be bound to multiple variables at the same time, i.e. (p1) and (p3) can be the same vertex
For example, "find friends of friends of Lee"(friendship being defined by the presence of a 'knows' edge):

SELECT p1.name AS p1, p2.name AS p2, p3.name AS p3
FROM student_network
MATCH (p1:Person) -[:knows]-> (p2:Person) -[:knows]-> (p3:Person) WHERE p1.name = 'Lee'


\section*{Non-equalities}

If such binding of vertices to multiple variables is not desired, one can use either non-equality constraints or the ALL_DIFFERENT predicate.

SELECT p1.name AS p1, p2.name AS p2, p3.name AS p3
FROM student_network
MATCH (p1:Person) -[:knows]-> (p2:Person) -[:knows]-> (p3:Person) WHERE p1.name = 'Lee' AND p1 <> p3
predicate \(\mathbf{p 1}<>\mathbf{p} 3\) in the query below adds the restriction that Lee,
which has to bind to variable p1, cannot also bind to variable p3


\section*{Binding an edge many times}

It is also possible for edges to bind to multiple variables
(i.e. different names but they refer to the same edge).

For example, "find two people that both know Riya"
```

SELECT p1.name AS p1, p2.name AS p2, e1 = e2
FROM student_network
MATCH (p1:Person) -[e1:knows]-> (riya:Person)
, (p2:Person) -[e2:knows]-> (riya)
WHERE riya.name = 'Riya'

```



\section*{Match edges in any direction}

Any-directed edge patterns match edges in the graph no matter if they are incoming or outgoing
```

SELECT *
FROM g MATCH (n) -[e1]- (m) -[e2]- (o)

```

In case there are both incoming and outgoing data edges between two data vertices, there will be separate result bindings for each of the edges.

\section*{Common path expressions:}
```

 PATH two_hops AS () -[e1]- () -[e2]- ()
 SELECT *
FROM g MATCH (n) -/:two_hops*/-> (m)

```

The above query will return all pairs of vertices \(\mathbf{n}\) and \(\mathbf{m}\) that are reachable via a multiple of two edges, each edge being either an incoming or an outgoing edge.


\section*{Graph Ouery Operators - 1}

We need to translate our high-level queries to basic operations on our data-structures

It's a complex problem! What operators do we need, how do we apply them?

Here we see a few basic operators. In the contest, you will implement and optimize one of them (neighbour match)

\section*{Graph Ouery Operators - 2}

Root Match: matches all root vertices
Constant vertex match: root match optimized for unique vertices

Neighbor Match: given a vertex, matches all its neighbors
Edge Match: given two vertices, checks if they are connected via an edge

Common Neighbor Match: given two vertices, matches all common neighbors

Cartesian product: combine results of different operators

Similar to a table scan in a DB, it fetches all vertices. Optionally, apply filters or projections

Done by scanning the data-structure representing vertices


\section*{Constant Vertex Match}

\section*{Root match operator specialized for unique vertices}

If we are matching a vertex that we know is unique (e.g. filter condition on index/key), we can (and should) be faster than standard root match

Implementation: key match on a set/hash-map, \(\mathrm{O}(1)\), but requires additional data-structure

Queries rooted on a unique vertex are common, still worth optimizing for! Think about queries like "find all passengers who took a flight from MPX Iast week"


\section*{Neighbour Match - 1}

Similar to a table JOIN in a DB, it retrieves the neighbours of one or more input vertices

Leverage the CSR for fast traversal, or perform a table JOIN


\section*{Neighbour Match - 2}

Matching with depth > 1 requires care
- Avoid repeating matches for the same vertex (e.g. 0)
- Some vertices don't have outgoing edges(e.g. 3)


BF Traversal

\section*{Neighbour Match - 3}

With depth > 1, we do a Breadth-First or Depth-First Traversal
BF: match all (a), then all (b), then all (c)
Easy to parallelize, but requires storing a lot of intermediate results DF: match one (a), then one (b), then all (c) w.r.t. that (b), then another (b), then all (c) w.r.t. that (b), etc.

Low memory consumption, O (depth) instead of O (width), but difficult to parallelize, and might require multiple accesses to repeated neighbours We can combine both approaches for best performance!


\section*{DF Traversal}

\section*{Skeleton of BF and DF traversal}

\section*{BF: use a queue (FIFO). DF: use a stack (LIFO) \\ In both cases keep track of visited vertices (e.g. with a set) Here I visit the entire graph and store distances from the source}
```

void bf(std::vector<int> \&ptr, std::vector<int> \&idx,
std::vector<int> \&res, int start_index = 0) {
std::queue<int> frontier;
frontier.push(start_index);
std::unordered_set<int> seen;
res[start_index] = 0;
while (frontier.size() > 0) {
int curr_elem = frontier.front();
frontier.pop();
seen.insert(curr_elem);
for (int i = ptr[curr_elem]; i < ptr[curr_elem + 1]; i++) {
int child = idx[i];
res[child] = std::min(res[child], res[curr_elem] + 1);
if (seen.find(child) == seen.end()) {
frontier.push(child);
} } }}
void df(std::vector<int> \&ptr, std::vector<int> \&idx, std::vector<int>
\&res, int start_index = 0) {
std::stack<int> stack;
stack.push(start_index);
std::unordered_set<int> seen;
res[start_index] = 0;
while (stack.size() > 0) {
int curr_elem = stack.top();
stack.pop();
seen.insert(curr_elem);
for (int i = ptr[curr_elem]; i < ptr[curr_elem + 1]; i++) {
int child = idx[i];
res[child] = std::min(res[child], res[curr_elem] + 1);
if (seen.find(child) == seen.end()) {
stack.push(child);
} } }}

```

\section*{Edge Match}

After matching (b), don't apply neighbour match to (b)
Instead, apply binary search in the outgoing neighbourhood of (b) to find (a)
\begin{tabular}{l}
\multicolumn{5}{c}{\begin{tabular}{l} 
SELECT \(\mathbf{a , b}\) \\
MATCH \\
(a)->(b)->(a) \\
instead of
\end{tabular}} \\
linear scan from \\
idx[1] to idx[3]
\end{tabular}


\section*{Common Neighbor Match} SELECT a, b, c
MATCH (a)->(b)<-(c)

Option 1: neighbourhood match from (a), neighbourhood match from (b) to (c) using a CSC. Cost \(=O(V)+O(V)^{2}\)

Option 2: neighbourhood match from (a), then binary search in the neighbourhood of (c) to find common neighbours.
Alternatively, neighbour match from (c) followed by set intersection. Cost \(=0(\mathrm{~V} \cdot \log (\mathrm{~V}))\) or \(3 \cdot \mathrm{O}(\mathrm{V})\)
Cost is misleading as very dependent on number of neighbours


\section*{Cartesian Product}

SELECT \(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\)
MATCH ( \(a\) ) \(->(b)\), ( \(c)->(d)\)
WHERE a.ID \(=1, c . I D=2\)

Combine results from different operators, by computing all possible combinations

Used when no other operator can be applied, e.g. when combining separate MATCH patterns

It's your last resort: it's expensive, and causes a quadratic increase in result size

\begin{tabular}{|c|c|c|c|}
\hline \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{c}\) & \(\mathbf{d}\) \\
\hline 1 & 0 & 2 & 0 \\
\hline 1 & 0 & 2 & 1 \\
\hline 1 & 2 & 2 & 0 \\
\hline 1 & 2 & 2 & 1 \\
\hline 1 & 4 & 2 & 0 \\
\hline 1 & 4 & 2 & 1 \\
\hline
\end{tabular}
    SELECT \(a, b, c, d\)


\section*{Cartesian Product - 2}

SELECT \(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\)
MATCH (a)->(b), (c)->(d)
WHERE a.ID \(=1, c . I D=2\)

\section*{Small pills of query planning}

Think what happens if you apply Cartesian Product before WHERE
- You compute all edges in the graph twice, 20(E)
- You compute all combinations of edges, \(\mathrm{O}(\mathrm{E})^{2}\)
- Then you filter the edges, \(\mathrm{O}(\mathrm{E})^{2}\)

Instead, computing the filter before neighbour match and Cartesian is way way better!


Worst case plan on our graph:
1. Neighbourhood match, twice: \(2 \star 8\)
2. All combinations: \(8^{2}\)
3. Filter edges: \(8^{2}\)

Total: 208 operations

Best case plan on our graph:
1. Root match on a and c: \(2 * 1\)
2. Neigh. match on \(\mathbf{a}=1\) and \(\mathbf{c}=2: 3+2\)
3. Cartesian product: 3 * 2

Total: 13 operations, \(16 x\) better!

\section*{Quick overview of Hash-Join}

Hash-Join
More Hash-Join
Even more Hash-Join

\section*{Storing graphs as tables}

Starting point: a graph stored as a table Here, 2 columns \(\mathbf{x}\), \(\mathbf{y}\) but we could have other columns (edge properties)
\begin{tabular}{|r|l|l|}
\hline index & x & y \\
\hline 0 & A & B \\
\hline 1 & A & D \\
\hline 2 & A & E \\
\hline 3 & B & C \\
\hline 4 & B & F \\
\hline 5 & B & H \\
\hline 6 & B & L \\
\hline 7 & C & A \\
\hline 8 & C & B \\
\hline 9 & D & A \\
\hline 10 & D & C \\
\hline 11 & D & F \\
\hline & & \\
\hline
\end{tabular}

\section*{We are not limited to integer values}

To quickly retrieve neighbours, we can build a hash-table on column x
- Not much different from an adjacency list on \(\mathbf{x}\) as key, built with an underlying hash-table
- But we must be aware of the underlying hash-table implementation!
- Here, simplified situation as we have only in-memory data

\section*{Hash-table, idealized view}

Ideally, each vertex will map to a different row of the hash-table Hash function: a function s.t. (ideally) \(\mathrm{h}\left(\mathrm{x}_{1}\right)=\mathrm{h}\left(\mathrm{x}_{2}\right) \leftrightarrow \mathrm{x}_{1}=\mathrm{x}_{2}\)
\begin{tabular}{|r|l|l|}
\hline index & x & y \\
\hline \(\mathbf{0}\) & A & B \\
\hline \(\mathbf{1}\) & A & D \\
\hline \(\mathbf{2}\) & A & E \\
\hline \(\mathbf{3}\) & B & C \\
\hline \(\mathbf{4}\) & B & F \\
\hline \(\mathbf{h}(\mathrm{x}=\mathrm{A})\) & \(0,1,2\) \\
\hline \(\mathrm{~h}(\mathrm{x}=\mathrm{B})\) & \(3,4,5,6\) \\
\hline \(\mathrm{~h}(\mathrm{x}=\mathrm{C})\) & 7,8 \\
\hline \(\mathrm{~h}(\mathrm{x}=\mathrm{D})\) & \(9,10,11\) \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{rl|l|}
\hline \\
\hline
\end{tabular}

What if \(\mathrm{h}\left(\mathrm{x}_{1}\right)=\mathrm{h}\left(\mathrm{x}_{2}\right)\) for \(\mathrm{x}_{1}!=\mathrm{x}_{2}\) ?
We have a conflict

We store rows indices. If you have just 2 columns, might as well store y directly

Conflicts will happen unless the codomain of \(h(\).\() is |V|\)

Using hash-tables gives the flexibility of non-int keys and dynamic graphs

\section*{Hash-table, real implementation}

In practice, we have a fixed number of buckets/blocks, equal to the codomain of \(h(\).
- Each block is a list (usually a fixed-size array, the block size)
- After computing h(.), linear scan of the block to find the desired key (if lookup) or to find an empty spot (if storing a value)
- If the block is full, we add a new block after it (overflow chain, a linked list of blocks). An extensible vector is also ok in our case
- If blocks are too full, we can increase the number of blocks (and change \(\mathrm{h}(\).\() accordingly). This is expensive, as we might have to recompute all the\) existing blocks (if exists a stored value x for which \(\mathrm{h}_{1}(\mathrm{x})!=\mathrm{h}_{2}(\mathrm{x})\) )
- Rule of thumb: if blocks are filled above \(80 \%\), the probability of conflicts is so high that the current hash-table is no longer worth using

\section*{Hash-table, real implementation}
\begin{tabular}{|r|l|l|}
\hline index & x & y \\
\hline 0 & A & B \\
\hline 1 & A & D \\
\hline 2 & A & E \\
\hline 3 & B & C \\
\hline 4 & B & F \\
\hline 5 & B & H \\
\hline 6 & B & L \\
\hline 7 & C & A \\
\hline 8 & C & B \\
\hline 9 & D & A \\
\hline 10 & D & C \\
\hline 11 & D & F \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|l|l|l|}
\hline key & BLOCK & B[0] & B[1] & \(\mathrm{B}[2]\) & \(\mathrm{B}[3]\) \\
\hline \begin{tabular}{r}
\(h(x=A)\), \\
\(h(x=C)\)
\end{tabular} & 1 & \(\mathrm{~A}: 0,1,2\) & \(\mathrm{C}: 7,8\) & & \\
\hline \begin{tabular}{r}
\(\mathrm{h}(\mathrm{x}=\mathrm{B})\), \\
\(\mathrm{h}(\mathrm{x}=\mathrm{D})\)
\end{tabular} & 2 & \begin{tabular}{l}
\(\mathrm{B}:\) \\
\(3,4,5,6\)
\end{tabular} & \begin{tabular}{l}
\(\mathrm{D}:\) \\
\(9,10,11\)
\end{tabular} & & \\
\hline
\end{tabular}

2 blocks, each block has size 4
In some implementations, store rows directly in block cells, e.g. \([A, B],[A, D]\), [ \(A, E]\) (in 3 blocks cells) instead of A: \([0,1,2]\) in 1 cell


Overflow chain

\section*{Hash-join - 1}

\section*{OPTIMIZED:}

SELECT a, b, c
MATCH (a)->(b)->(c)

SELECT a.x, b.x, c.x
FROM graph_table a, graph_table b, graph_table c
WHERE a.y = b.x AND b. y = c.x

SELECT a.x, b.x, b.y
FROM graph_table a, graph_table b
WHERE \(\mathrm{a} . \mathrm{y}=\mathrm{b} . \mathrm{x}\)

A single join is done as select a.x, b.x FROM a, b WHERE a.y \(=\mathrm{b} \cdot \mathrm{x}\)
1. Find the smaller table (let's say a)
2. Create a hash-table for \(\mathbf{b}\) if it doesn't exist already
3. Iterate on rows of a
4. For each row, lookup the value of \(\mathbf{a} \cdot \mathbf{y}\) on the hash-table of \(\mathbf{b}\)
a. First find the bucket with h(a.y), then scan to find results
5. Add results of \(\mathbf{b} . \mathbf{x}\) (from the hash-table) to the result

\section*{Hash-join - 2}

SELECT a.x, b.y FROM a, b WHERE a.y = b. x
We can optimize this query with an additional hash-table on a. \(\mathbf{y}\), using the same hash function used for \(\mathbf{b} . \mathbf{x}\) (that's ok, the range of values is the same)

Now, values values of a. \(\mathbf{y}\) will have the same block index of values in \(\mathbf{b} . \mathbf{x}\), \(\operatorname{block}_{a}(y)=\operatorname{block}_{b}(x)\)
We can perform a block-wise join by processing pairs of blocks (one block from a, one from b) in parallel. Each graph vertex will fall in the same block in both hash-tables! This also enables efficient processing disk-resident data

More info: www.csd.uoc.gr/~hy460/pdf/p63-mishra.pdf

\section*{Hash-join - 2}
\begin{tabular}{|r|l|l|}
\hline index & x & y \\
\hline 0 & A & B \\
\hline 1 & A & D \\
\hline 2 & A & E \\
\hline 3 & B & C \\
\hline 4 & B & D \\
\hline 5 & B & E \\
\hline 6 & B & F \\
\hline 7 & C & A \\
\hline 8 & C & B \\
\hline 9 & D & A \\
\hline 10 & D & C \\
\hline 11 & D & F \\
\hline
\end{tabular}

\section*{H1: Hash-table on \(x\)}
\begin{tabular}{|r|l|l|l|l|l|}
\hline key & BLOCK & B[0] & \(B[1]\) & \(B[2]\) & \(B[3]\) \\
\hline \begin{tabular}{r}
\(h(x=A)\), \\
\(h(x=C)\)
\end{tabular} & 1 & \(A: 0,1,2\) & \(C: 7,8\) & & \\
\hline \begin{tabular}{r}
\(h(x=B)\), \\
\(h(x=D)\)
\end{tabular} & 2 & \begin{tabular}{l} 
B: \\
\(3,4,5,6\)
\end{tabular} & \begin{tabular}{l}
\(\mathrm{D}:\) \\
\(9,10,11\)
\end{tabular} & & \\
\hline
\end{tabular}

H2: Hash-table on y
\begin{tabular}{|r|l|l|l|l|l|}
\hline key & BLOCK & \(B[0]\) & \(B[1]\) & \(B[2]\) & \(B[3]\) \\
\hline \begin{tabular}{c}
\(h(x=A)\), \\
\(h(x=C)\), \\
\(h(x=E)\)
\end{tabular} & 1 & \(A: 7,9\) & \(C: 3,10\) & \(E: 2,5\) & \\
\hline \begin{tabular}{c}
\(h(x=B)\), \\
\(h(x=D)\), \\
\(h(x=F)\)
\end{tabular} & 2 & \(B: 0,8\) & D: 1,4 & \(F: 6,11\) & \\
\hline
\end{tabular}

Start from rows in H 2 : \(\mathrm{B}[0]\) tells us that rows 7,9 ends with A . Now

\section*{Overflow chain}

Join B 1 in H 1 with B 1 in H 2 , and B 2 in H 1 with B 2 in H2 find key A in H1, and create results joining rows 7,9 with 0,1,2

\section*{And finally...}

\section*{Graph-Traversal VS Hash-Join Contest Overview}

\section*{Graph-Traversal VS Hash-Join Contest Overview}

The goal of this challenge consists in implementing what you learned about CSR and Hash-Join, and implement a simple query execution engine able to perform a set of predefined simple queries.

\section*{Important references}
- Repository with README and code:
github.com/AlbertoParravicini/high-performance-graph-analytics-2020
- For any question: alberto.parravicini@polimi.it
- Contest start: NOW
- Contest end: December 9th 2020, 11.59 PM (Milan Time!)

\section*{Graph-Traversal VS Hash-Join Contest Overview}

\section*{Dataset}

POCEK, the most popular online social network in Slovakia
1.6M vertices, 30M edges, we only care about the graph topology (i.e. friendship relations)

Protip: start loading and working with a smaller subgraph!
https://snap.stanford.edu/data/soc-Pokec.html

\section*{Graph-Traversal VS Hash-Join \\ Contest Overview}

4 Tasks
1. Load the dataset, and store the graph in a CSR and a Tabular format. You should be able to load a subgraph too
2. CSR Traversal and Hash-Join, you should implement the Neighbour Match operator in these 2 ways
3. Benchmark some queries! (a)->(b), (a)->(b)->(c), (a) \(->(b)->(c)->(d)\), etc. Which implementation is faster? Which uses your hardware more efficiently/effectively?
4. Build a data-driven heuristic, to pick the best implementation based on the data and query

\section*{Graph-Traversal VS Hash-Join Contest Overview}

\section*{And finally... Write a report}
- Submission before December 9th 11.59 PM 2020, Milan time
- Email to alberto.parravicini@polimi.it, CC to quidowalter.didonato@polimi.it and marco.santambrogio@polimi.it
- In the email:
names of participants, link to GitHub repo, PDF copy of report
Repository:
- The source code
- A README that explains how to execute your solution
- A 4-pages report written in Latex describing your findings in tasks 3 and 4, a description of your heuristic, and any other implementation decision you took that you'd like to share with us

\section*{Graph-Traversal VS Hash-Join Contest Overview}

Additional notes (please refer to
github.com/AlbertoParravicini/high-performance-graph-analytics-2020/blob /main/track-graph-query/README.md)
- Your code must be buildable with standard tools like Maven
- Use Java. Other JVM based languages(e.g. Scala) are ok if you can properly justify their usage
- Tests must be runnable using a Bash or Python script
- The easier for us to replicate your results, the better it is for you!
- External libraries are allowed, as long as you justify their usage and the core of the implementation is written by you. You can use existing CSR/Hash-Join implementations, but only as a performance comparison against your custom implementation
- The report should be 4 pages long at most, and written in double-column Latex, with font-size 10pt

\title{
Graph-Traversal VS Hash-Join \\ Contest Overview
}

In the repository you'll find the skeleton of 4 classes. Feel free to extend them as you like. You can change the existing interfaces, but justify any change!

CompressedSparseRow Basic CSR class, it offers 2 methods
```

void buildFromFile(String filepath)
ArrayList<Integer> getNeighbors(Integer vertex_id)

```

Table Basic tabular graph implementation
void BuildFromFile(String filepath)
CSREngine Given a CSR and a Integer, return neighbours
ArrayList<Integer> traverse(CompressedSparseRow csr, Integer vertex_id)
HashJoinEngine Given a Table and a Integer, return neighbours
ArrayList<Integer> join(Table tab1, Integer element_id);

\section*{Graph-Traversal VS Hash-Join Contest Overview}

These functions are just a sketch. You'll need something more!
Query parser: to turn queries into a list of operations. It's very simple, as all queries have form (a)->(b)->(c)->. . .

Extend the query operators: instead of providing just an integer to the traverse/join functions, you can pass a list of vertices or even a full graph/table, to optimize the overall computation

Use a Graph or Vertex class: using objects to represent vertices might help in some cases (e.g. track seen vertices in traversal). Be careful with overheads though! Also, instead of building CSR/Table directly from a file you can use an intermediate Graph data structure and build CSR/Table from it

Evaluating index creation overheads: building CSR and Hash-tables has a cost that must be properly accounted for in benchmarks. For example, you can amortize the creation cost over the cost of 100 queries vs just 1 query.

\title{
Graph-Traversal VS Hash-Join Additional References
}

Graph Analytics at MIT, 2018 https://people. csail.mit.edu/jshun/6886-s18/
Roussopoulos, Nick, and Hyunchul Kang. "A pipeline n-way join
algorithm based on the 2-way semijoin program." IEEE Transactions
on Knowledge and Data Engineering 3.4 (1991): 486-495
https://ieeexplore.ieee.org/iel3/69/3315/00109109.pdf?casa_token=etWCzgbsSZQAAAAA:LZNQ3sWFfgfoIL-43D8xS5Ak9zPb6-29g_3SUNUS2Y3mdJ137Av9 2EXtiuluj486H9PMMHI

Chavan, Shasank, et al. "Accelerating joins and aggregations on the oracle in-memory database." 2018 ICDE. IEEE, 2018
https://ieeexplore.ieee.org/iel7/8476188/8509221/08509384.pdf?casa_token=ZNA-5bDQenYAAAAA:VK70dgHiJHE-zqpk7WGZUy08rLcbAK4FS-a6le1NKZHn nuL-bDgcwDY04pZ2jV3Shtx5Ezg

Dees, Jonathan, and Peter Sanders. "Efficient many-core query execution in main memory column-stores." 2013 IEEE 29th International Conference on Data Engineering (ICDE). IEEE, 2013 https://ieeexplore.ieee.org/iel7/6530811/6544790/06544838.pdf?casa_token=gGdMOuyC0vQAAAAA:mafYsFjMgSyR-ahMzqRa0ch05uFhb_4TThYc3THGjBh4 xqUxMWIbyZlkIcLB0kmZOVKKyCo

Also look for recent conference proceedings of VLDB and SIGMOD```

